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Abstract 

By solving the kinetic equation for the density matrix 
of fast electrons the intensity distribution of the 
diffuse background and the Kikuchi lines and bands 
is found. It is shown that the Kikuchi pattern contrast 
depends on the angle of deflection of the scattered 
particles and the crystal thickness. For a thin crystal 
the expressions obtained coincide with the usual 
results found in the single inelastic scattering approxi- 
mation. The theory takes into account both the 
dynamical diffraction and multiple inelastic scatter- 
ing of electrons and gives a simple interpretation of 
a variety of contrast effects observed in thick single 
crystals. 

I. Introduction 

As is well known the diffraction of inelastically scat- 
tered electrons in crystals leads to Kikuchi line and 
band formation (Tomas & Goringe, 1979; Reimer, 
1984). Kainuma (1955), Fujimoto & Kainuma (1963), 
Okamoto, Ichinokawa & Ohtsuki (1971) and Ohtsuki 
(1983) calculated the intensity distribution in Kikuchi 
patterns using the single inelastic scattering approxi- 
mation. This approximation is only valid for very thin 
crystals (the thickness should be smaller than the 
mean free path with respect to inelastic collisions). 
In the case of a thick crystal one needs to take into 
account multiple inelastic scattering. As was pointed 
out by Hall (1970), Ishida (1970, 1971) and Chukhov- 
skii, Alexanjan & Pinsker (1973), the contrast reversal 
of Kikuchi bands can be explained by means of 
absorption of inelastically scattered electrons. This 
procedure, however, does not conserve the total prob- 

ability and leads to an exponential decrease of the 
scattered electron density (Thomas & Humphreys, 
1970; Serneels, Van Roost & Knuyt, 1982). This result 
is at variance with experimental observation (Uyeda 
& Nonoyama, 1967, 1968) of the Kikuchi pattern in 
thick crystals (where the thickness is larger than the 
mean free path with respect to inelastic collisions). 
The application of an iterative method to the problem 
of electron multiple scattering has been reported by 
H0ier (1973). This approach leads to a result in the 
form of an infinite series with many difficulties for 
quantitative evaluation. 

The most consistent treatment of this problem is 
the use of the quantum kinetic equation for a single- 
particle density matrix (Blum, 1981). This formula- 
tion of multiple scattering theory was first used by 
Migdal (1955) for the case of random space-distribu- 
tion scatterers. Kagan & Kononets (1970, 1973, 1974) 
in their theory of proton channelling generalized this 
method for the case of a crystalline medium. Bird & 
Buxton (1980) discussed the application of similar 
equations to electron diffraction. 

Most of the known analytical solutions of the quan- 
tum kinetic equation in single crystals were obtained 
in the diffusive approximation (Kagan & Kononets, 
1973). This approximation does not work for 10- 
1000 keV electrons, i.e. in the energy range used for 
observations by transmission electron microscopy. 

For the two-beam case the quantum kinetic 
equation was solved by Dudarev & Ryazanov (1985) 
without using the diffusive approximation. 

Nevertheless, the two-beam approximation fails in 
many cases for fast electrons, especially if they move 
along high-symmetry directions. For this reason, to 

0108-7673/88/010051-11503.00 O 1988 International Union of Crystallography 
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calculate the electron angular distribution in thick 
crystals one should know some non-diffusive many- 
beam solutions of the quantum kinetic equation. A 
suitable mathematical technique is presented below. 

The electron-atom differential cross section 
do-(O)/d.O has a rather sharp maximum in the for- 
ward direction. Consequently, the electron velocity 
direction in a thin crystal does not really change if 
the crystal thickness L is smaller than the transport 
length 

/tr = [N, J do'(O)(1 - cos 0 ) ] - '  

where N~ is the number of atoms per unit volume. 
The total path length RB for fast electrons is always 
larger than /tr (RB >/tr) and the electron energy does 
not vary appreciably in a thin crystal. Under these 
conditions the penetration depth z is related to the 
time t by Z=Vot, where Vo is the initial electron 
velocity (Kagan & Kononets, 1973, 1974; Gratias & 
Portier, 1983). In this case one can obtain the electron 
angular distribution from the solution of the time- 
dependent kinetic equation taken at the moment T = 
L/ vo. 

This equation should incorporate both diffraction 
by the crystal lattice mean potential and inelastic 
scattering accompanied by excitation of the electron 
and phonon subsystems. Such an equation is derived 
below [equation (23)]. In the limiting case of pure 
elastic scattering this equation (23) yields the well 
known elastically scattered electron distribution (37), 
(45) (i.e. intensity of Bragg spots). As is demonstrated 
below, the first iteration of (23) leads to the Kikuchi 
pattern intensity distribution discovered by Kainuma 
(1955), Fujimoto & Kainuma (1963), Okamoto et al. 
(1971) and Ohtsuki (1983). The present paper is con- 
cerned with a new approximate solution of the quan- 
tum kinetic equation for thick crystals. This method 
gives some analytical expressions for the Kikuchi line 
and band contrast, (74), (75), which are in good 
agreement with the observed angular distribution of 
electrons transmitted through a thick crystalline foil. 

2. A quantum kinetic equation for fast-electron 
multiple scattering 

As usual we describe a dissipative quantum system 
evolution in terms of a density matrix p(x,,  x2; t), 
where x~ and x2 are the system phase-space coordi- 
nates and t is time. The density matrix for the isolated 
stationary quantum system is a simple product 

p(x,,x2; t )=  gt(x,; t)~*(x2; t) (1) 

where ~ ( x ;  t) is the system wave function. The prob- 
ability density is related to the matrix diagonal ele- 
ments 

p(x, x; t) = I~/,(x; t)l 2. (2) 

The density-matrix off-diagonal elements describe the 

mutual coherence properties of the system states at 
the phase-space points x, and x2 (Blum, 1981). 

In the case considered the phase-space coordinates 
are the fast-electron momentum p and the set of 
crystal state coordinates n. 

The motion of an electron can be described by 
means of the electron single-particle density matrix 

p(p, p'; t) = )-" p(p, p'; n, n; t). (3) 
tl 

From (3) the electron momentum probability distri- 
bution has a form 

w(p, T) = p(p, p, r ) .  (4) 

By making use of (4), the electron angular distribution 
can be written down as 

o c  

dw(lJ) /dl2  = I dpp2p(plI,  PlI; T) (5) 
0 

and the electron energy spectrum is 

dw(E) /dE=Id3pp(p ,p ;  T)~5(E-p2/2m) (6) 

where m is the electron mass. The momentum proba- 
bility distribution of fast electrons transmitted 
through a crystal slab can be obtained from (4)-(6) 
by means of the change T ~  L/vo, where L is the 
thickness of the slab. 

A self-consistent equation for p(p, p'; t) will be 
developed below in the case of low electron-beam 
intensity (the crystal properties do not change under 
the electron irradiation). An equation of motion for 
the density matrix has the form (Blum, 1981) 

ih Op(p, p'; n, I; t)/Ot 

= (ep- ep,+ E. - Et)p(p, p'; n, I; t) 

+I  [d3q/(27r)3] Y (nlU(q)lf)p(p- hq; p';f, l; t) 
f 

- I  [d 3q/(2rr) 3] ~ p(p, p '+ hq; n,f; t)(flU(q)ll ) 
f 

(7) 

where ep = p2/2m. E, is the energy of a crystal excited 
state, 

U(q) = I d3r U(r) exp (- iqr) ,  

and U(r) is the electron-crystal interaction potential 

U(r)-- - ~  Zoe2/Ir-Ro-uo] 
Q 

+~ e~/lr-Ro-uo-r~ol+~e2/Ir-r~l (8) 
a,b t' 

where Za is the atomic number of an atom of the 
medium, Ra denotes the equilibrium position of the 
atom, and ua is its thermal displacement. The second 
and third terms in (8) describe the interaction of a 
fast incident electron with, respectively, inner-shell 
electrons, whose coordinates r~o are reckoned from 
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the instantaneous position of the centre of the atom, 
and weakly bound conduction electrons. 

As usual we assume the initial crystal state to be 
the thermodynamical equilibrium state with the 
density matrix (Feynman, 1972) 

(Pcryst),,,,,=6,,,,,exp(-E,,/O)/Y~exp(-Et/O). (9) 
I 

The initial condition for (7) has the form 

'. 0) po(p,p)6.., p(p,p';  n, n ,  = ' 

x exp ( - E , / 0 ) / 2  exp (-E,/0).  
l 

(10) 

If the wave function of an incident electron coincides 
with a planar wave 

qto(r) = (27rh)-3/2 exp ( i l l r / h ) ,  

the initial electron density matrix can be written as 

po(P, P')= ~ dr dr '  exp [ i (p ' r ' -  p r ) /h ]  ~o(r) ~*( r ' )  

= (2 ~ )3 ~ ( p _  n )  8 (p' - n ) .  ( 11 ) 

For a further treatment it is suitable to split the 
potential (8) into two parts, namely the elastic scatter- 
ing potential Uo(r) and the inelastic scattering poten- 
tial 6U(r),  

U(r)-= Uo(r) + 8U(r). (12) 

The 'elastic' part of the scattering potential Uo(r) 
describes all the processes without change of the 
crystal state. Electron diffraction is the principal of 
such processes. Uo(r) has only diagonal matrix ele- 
ments: 

(nlUo(q)ln') = 6,,,,,Y~(llUo(q)ll)Z-' exp(-Ei/O) (13) 
l 

Z = 2 exp (-E,/0). 

All other processes like inelastic electron scattering 
are described by means of a 'fluctuating part of the 
potential' 

(n 6U(q) n ' ) = ( n  U(q)-Uo(q)ln ' ) .  

Direct methods of summation over the excited states 
of the crystal have been developed by Afanas'ev & 
Kagan (1967). By making use of their results one can 
obtain 

(n Uo(q)]n')=6,,,,,(Z.rr)32 A ( K ) 6 ( q - K ) ,  (14) 
K 

where K is the reciprocal-lattice vector and 

A (K) = (4zre 2 N~ K 2) 2 [-Z, ,  +f~ (K)] 
ot 

x exp ( - iKr~)  exp [-½M~(K)] (15) 

with M~,(q)= ((qu,~)z); exp [-½Ms(q)] is the Debye- 
Waller factor, f~ (K) is the X-ray scattering amplitude 
for a single atom, and N is the number of unit cells 

per unit volume. After the summation over the crystal 
states in (7), using (15) we can write down the formula 

ih 0p(p, p'; t)/at 

= ( e p -  e¢)p(p ,  if; t) 

+~A(K)[p(p-hK,  p'; t ) - p ( p ,  p '+  hK; t)] 
K 

+ Y~ ~ [d 3q/(27r)3](n 8U(q) f )  
f,n 

t, x p ( p -  hq; p , f ,  n; t) 

- E  j [d3q/(27r)3]p(P, P '+ ~q; n,f; t) 
f,n 

× (f]6U(q)]n). (16) 

Let us consider the crystal state near thermodynami- 
cal equilibrium. In this case 

p ( p -  hq, p';f,  n; t)-'- p ( p -  hq, p'; t) 

xS,,/Z -1 exp(-E,,/O) (17) 

and the matrix elements containing 8U in (16) tend 
to zero. To prove this one should use the equality 

2 (n[SU(q)[n) Z-~ exp(-E,/O)=O. 
n 

To calculate the right-hand side of (16) one needs to 
take into account the electron-crystal interaction and 
excitation of the crystal. In the first non-vanishing 
approximation with respect to 6U we can write 

ih Op(p- hq, p ' ; f  n; t)/Ot 

- p ' ; f ,  = (ep_~q ,~p,-~- E f -  E, , )p (p-  hq, n; t) 

+ Y, A ( K ) [ p ( p -  h q -  hK; p ' ; f  n; t) 
K 

- p ( p -  hq, p '+  hK;f ,  n; t)] 

+ I [ d 3 k / ( 2 r r ) 3 ] ( f [ 6 U ( k ) l n )  

× p ( p -  h q -  hk, p'; t)Z -1 exp (-E./O) 

-~ [d3k/(2rr)3]p(p - hq, p'+ hk; t) 

×(f[6U(k)]n)Z -1 exp(-Ef/O); (18) 

ih Op(p, p '+  hq; n,f; t)/Ot 

: ( E p  - -  Ep'+hq-[- E n - Ef)p(p, p'+ hq; n,f; t) 

+ 2 A(K)[p(p-hK, p'+ hq; n,f; t) 
K 

- p ( p ,  p '+  h K +  hq; n,f; t)] 

+I [d3k/(2~r)3]( n 6U(k)lf) 

x p ( p -  hk, p '+  hq; t)Z-'  exp (-Ef/O) 
- I  [d3k/(2rr)3]p(P, P'+ h q +  hk; t) 

× (nl6U(k)[f)Z-' exp ( -E. /0) .  (19) 

The effective values of q in (18) and (19) are compar- 
able in order of magnitude with the reciprocal atomic 
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radius, q'--me2Zla/3/h2. This fact leads to the 
inequality I p+ q- pl>>lA(K)l. For this reason the 
contribution of the Fourier transforms of the regular 
potential A (K) will be negligible. In other words, the 
effective linear dimension of the single-inelastic-scat- 
tering region is much smaller than the extinction 
distance hVo/lA(K)l. As was pointed out by Howie 
(1963), the region of small q, q<-]A(K)l/hvo, con- 
tributes a negligible value to the total inelastic cross 
section. Taking into account this circumstance we can 
derive from (10), (18) and (19) 

p ( p -  hq, p ' ; f  n; t) 

= - ( i /  h) i dt exp [ - ( i /  h) 
0 

X ( Ep_hq-- Ep'-{- E f -  E,,)( t -  r)] 

x {I [d3k/(2~)3](fl6U(k)ln) 

x p ( p -  h q -  hk, p'; r)Z -~ exp (-E~/O) 

-~ [d3k/(2rr)3]p(p - hq, p '+ hk; r) 

x (f l6U(k)ln)Z- '  exp (-E¢/0)}. (20) 

p(p, p '+ hq; n,f; t) 

= - ( i / h )  j dr exp [ - ( i /h )  
0 

X (Ep-- Ep'+ hq+ E n - -  Ef) ( t - r ) ]  

x {j [d3k/(2~.)3](n 6 U ( k ) f )  

x p ( p -  hk, p '+ hq; r)Z -1 exp (-Ey/O) 

-I[d3k/(2~r)3]p(p,p'+ h q +  hk; r) 

x(n  6U(k) l f )Z- '  exp(-E,,/O)}. (21) 

Both the exponential factors in (21) and (22), 

and 

exp [ - ( i / h  )( Ep_ hq -- Ep + E f  - E,)( t - r)] 

exp [-(  i/ ~i )( Ep-- Ep,+ hq"{- E, - Er)( t -  r)] 

are rapidly oscillating functions of r. Hence we can 
change the variable r into t in the argument of the 
density matrix p and let t tend to infinity in the upper 
limits of the integrals. Using the well known relation 

oc 
I drexp(io)r)=Tr6(o))+v.p.(i/o)), (22) 
0 

where v.p. denotes the principal value, we can easily 
transform (16) into the closed self-consistent kinetic 
equation describing the evolution of the single- 

particle density matrix, 

h Op(p, p'; t)/Ot+ i(Ep-- Ep,)fl(p, p'; t) 

= - i ~  A ( K ) { p ( p - h K ,  p'; t ) - p ( p ,  p '+ hK; t)} 
K 

+ ~ I [ d3 q / (2~)  3] I do) ~ V ( K -  q) V(q) 
K 

x [ S ( K - q ;  -q ;  o))~(Ep_hq-- Ep,-- ho)) 

x p ( p -  hq, p '+ h K -  hq; t) 

- S(q; q -  K; o) )~ (Ep_hq-  Ep' "~- ~o)) 

x p ( p -  hK; p'; t)] 

+~r ~ [d3q/(2~r)3] ~ do) )-" V ( K - q )  V(q) 
K 

x [S(q; q - K ;  o))t~(ep-- Ep,+hq'~- ~O)) 

x p ( p -  h K +  hq; p '+  hq; t) 

- S ( K - q ;  - q ;  O))t~(Ep-- Ep,+h q -  ~IO)) 

x p(p, p '+  hK; to)], (23) 

where S(q; q - K ;  to) is the Fourier transform of the 
inelastic excitation structure factor: 

s(q;k; o))=(27r)3~ S(q; q - K , o ) ) 6 ( q - k - K )  (24) 
K 

and 

s(q,k,o))=[V(q)V(k)]-l  ~ Z -! exp(-Et/O) 
l,n 

x (ll~u(q)ln)(nl,~U(-k)ll) 
x 6[o) + ( E , -  En)/h] (25) 

where V(k)=41re2/k 2. In (23) we neglect all terms 
with principal values of integrals (Humphreys, 1979). 
These terms are smaller by an order of magnitude 
and go beyond the accuracy of experiments. 

3. Inelastic excitation structure factor 

During the practical calculation of the angular distri- 
bution of electrons transmitted through a single crys- 
tal one needs an analytical expression for the structure 
factor (25). This factor describes the set of inelastic 
excitations of a crystal. In the case of metals or 
semiconductors the structure factor (25) can be writ- 
ten as a sum of several terms describing various kinds 
of excitations, such as lattice vibrations, electron-hole 
excitations and plasmons (Okamoto, Ichinokawa & 
Ohtsuki, 1971 ): 

s(q; k; w) = Sph(q , k, o)) + sel(q; k; o)) + sN(q, k; to). 

(26) 

Both the experimental results of Cundy, Howie & 
Valdre (1969) and the theoretical considerations of 
Platzman & Wolff (1973), Radi (1970)and Kawamura 
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& Shimamoto (1975) lead to the conclusion of a 
homogeneous space distribution of valence electrons 
in some crystals like A1 and Si. In this case the 
plasmon excitation structure factor can be written in 
the form (Platzman & Wolff, 1973) 

Spl(q; k; to) 

= (27r) 36(q-  k)(Noq2/2mtop)6(w - top)r/(qc - q )  

(27) 

where No is the number of valence electrons per unit 
volume, htop is the plasmon excitation energy, qc is 
the plasmon cut-off vector and rt(x) is the step 
function 

1, x>_0 (28) 
n(x)=  0, x<0 .  

The electron-hole excitation factor was considered 
by Yoshioka (1957) and Afanas'ev & Kagan (1967). 
Assuming all the crystal electrons are in their ground 
states we can easily show that 

S~l(q; k; to) 

= N ~ ~ exp [ - i ( q - k ) R ~ ]  exp [ - ½ M r ( q - k ) ]  
n ~ O  t~ 

x f ( o ~ ( q ) f ~ o ~ ( - k ) 6 [ t o + ( E o - E ~ ) / h ]  (29) 

where 

f(o~)(q) = (01 ~ exp (- iqrb~)ln)  
ba 

is the atomic electron excitation amplitude of the 
transition from the ground state 0) into the excited 
state n) ¢ 10). The lattice-thermal-vibrations structure 
factor was considered by Hall & Hirsch (1965) and 
Afanas'ev & Kagan (1967). In the Einstein model 
for thermal motion (the thermal displacements of 
different atoms are assumed to be non-correlated) it 
is easy to derive the expression (Hall & Hirsch, 1965) 

Sph(q; k; to) 

= N6(to)  E [ - Z ~  +f~ (q)][-Z~ +f~ ( -k ) ]  
ot 

x exp [ - i ( q - k ) R ~ ] { e x p  [-½M,~(q- k)] 

- e x p  [ -  ½M,~(q) - ½M~ (k)]}. (30) 

(The phonon energy is equal in order of magnitude 
to the temperature 0 --- 0.025 eV and the thermal scat- 
tering can be considered as pure elastic.) Integrating 
the diagonal element of (23) over all momenta we 
find a total probability conservation law 

O[j' d3pp(p, p'; t)]/Ot=O. (31) 

4. Elastic electron scattering 

Let us consider an incident electron beam with a 
small angular width. In such a case the initial wave 

function coincides with a planar wave (11) and the 
scattered electron angular distribution consists of 
Bragg spots and a wide fan of inelastically scattered 
particles (Uyeda & Nonoyama, 1967, 1968). The solu- 
tion of (23) with the initial condition (11) has the form 

p(p, p'; t) 

= ( 2 ~ )  3 E ph , ( t )~ (p -n -~Gh)  
Gh;GI 

× t~(p'-- II - hGt)+Pinel(P, P'; t). (32) 

The summation o v e r  Gh and Gt in (32) is carried out 
over all the reciprocal-lattice vectors of the crystal. 
The density matrix Pine~(P, P'; t) describes the inelasti- 
cally scattered electrons. From (11) 

Phi(O) = ~hO~lO 
(33) 

Pinel(P, P'; 0) = 0. 

The diagonal elements of the density matrix phi(t) 
are related to the Bragg spot intensity 

Ih( T) = Phh( T). (34) 

The equations (23) and (32) constitute a closed system 
for matrix elements Phi(t) which is equivalent to the 
equations of the usual many-beam dynamical theory 
in an absorbing crystal: 

h Ophl /Ot  q- i ( e h  -- e l )Phi  

= - i  ~ [ Ahs -- (i/2)Ths]Psl + i ~ Phs[ Ast + ( i /2)  T~I] 
s s 

where (35) 

Ahs = A ( G h - G s ) ,  

eh = (II + hGI)2/2m, 

Ths=f [dak/(27r)2]S dto V ( I I / h + G h - k )  

× V(I I /h  + Gs - k )S ( I I /h  + Gh -- k; 

I I / h  +Gs - k ;  to)6(e~k-- en+  hto). 

As is easily seen from (35), the quantities Ahs and 
1 --~)'hs are the Hermitian and non-Hermitian parts of 

the effective potential for electron elastic scattering 
in a crystal (Whelan, 1965; Radi, 1970). 

In the case of the two-beam approximation the 
system (35) turns into four equations: 

h Opoo/Ot = - YooPoo - iAolPlo + ipolA lo 

- TolPlo/2 - Po171o/2 

h Oplo/Ot+ i(el - eo)Plo 

= -- TooPlo + ia ,o (p~ , -  Poo) - Y,o(P,, + Poo)/2 

h Opol + i ( e o -  el)pol 

= -'YooPo, + i A o , ( P o o - p , , )  - Y o , ( P , ,  + Poo)/2 
h Opll = -'YooP~l + iploAol - iAloPol 

- ! / , o p o , / 2  - P , o  To,/2. (36) 
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The quantit ies poo and p~ are the intensities of  the 
t ransmit ted and diffracted waves. 

In the case of fast electrons 13,~o ~la,ol (Reimer,  
1984) and we can derive a solution of (36) in the form 

Poo(t)=[2(1 + y 2 ) ] - ,  exp (-3,oot/ h) 

× {cos [2 A,ol(1 + y 2 ) l / 2 t / h  ] 

+ (1 + 2 y  2) cosh [ 3 '10  COS (O0) t/(1 +y2)'/2h] 
- 2y(1 + yZ)l/2 

x sinh [13',o cos (Oo)t/(1 +y2)'/Zh]} 

p,~(t) = [2(1 + y2)]-~ exp (-3,oot/h) 

x {cosh [I 3,,ol cos ( Oo)t/( 1 + y2),/2 h ] 

- c o s  [2la ,ol(1  + yZ)' /zt /h 1} 

Pro(t) = p * , ( t )  
1 

= - ~  exp (iOA) exp (-3,00t/h) 
x ( ( l + y Z )  -1/2 

x sinh [ 3,~0 cos (O0)t/(1 +y2)~/2h] 
- [ y / ( l + y 2 ) ]  

x {cosh [13,,ol cos (Oo)t/(1 +y2)'/Zh] 

- c o s  [21A,ol(1 + yZ)l/2t/hi}); 
y = ( e o - e ~ ) / 2 a m ]  

Am = [A,o exp (iOA) 

3'1o = 3'1o1 exp (iOr) 

0o = 0A - 0~. (37) 

These results coincide with the expressions found by 
Hashimoto,  Howie & Whelan (1962) in the dynamical  
diffraction theory. If the initial electron momentum 
direction is far from any crystallographic axis, we 
find from (37) that 

Phi(t) = tShOt~t o exp (-3,oot/ h ). (38) 

In the case of  pure elastic scattering 3,th = 0 and we 
can introduce a linear t ransformation 

p j j , ( t ) :  ~ [C+(I-I)]jhPht(t)Clj,(II) (39) 
h,I 

where 

and 

E [C+(II)]jh(eh6m + Ahz)CIj'(II)=Sjj'Ej (40) 
h,I 

(c+bh = (chj) * . 

The probabil i ty  density Y.z P, does not depend on the 
wave-function basis, so (39) is the unitary transfor- 
mation 

E t c+(n) ] , . ch , , (n )  = a,,, 
h 

(41) 
Chj(II)[ c+ (I I )  ]jl : ~hl" 

J 

After this t ransformat ion (35) can be written as 

apjj,/at + i( E, - Ey)&, 

= -½ Y./zi/-Pj,,j, - ½ Y. pjj,,p.j,,j, (42) j. j,, 

where 

~zw= Y. [c + (II)]jhVh,Co,(ll). 
t,h 

The initial condit ion for (42) has the form 

&j,(O) = c~(ll)co/(ll) .  (43) 

In the case of  pure elastic scattering 

&j,( t) = c~.(ll)cof(II) exp [ - i ( E j  - Ej,)t/ h ] (44) 

and for Bragg-spot intensities one finds directly 

Phh( T)  ~- 2 Chj(II)C~oj(I-I)Coj'(II)c~hj'(If) 
j.j' 

× e x p [ - i ( E j - E / ) T / h ] .  (45) 

The existence of inelastic scattering leads to a 
decrease in the total intensity of the Bragg spots 

~1 c) 2 Phh/at= h a E P~/at= - Z %hPht 
h j h,I 

= - Y./xj/pfj < 0. (46) 
j.j' 

In this case the diagonalizat ion of (35) by a unitary 
t ransformation is impossible and we need to use some 
approximate  methods to find a solution of  (42) 
(Reimer, 1984). 

5. Single inelastic scattering approximation 

Let us consider  the case when the initial beam direc- 
tion does not coincide with any of the crystal lographic 
axes and the crystal slab is thin enough, T< h/3,oo. 
In this case (32) can be solved by means of perturba- 
tion theory: 

p(p, p'; t) = (2¢rh)3~(p-  I I ) 6 ( p -  p') + p~l)(p, p,; t) 

(47) 

where 

S d3pp~l)(p, p; t ) <  1. 

Substitution of (47) into (23) gives a general form of 
the solution of first order  

p~l)(p, p,; t) = (2~-h) 3 Y~ q~oh(P, t )6 (p ' - -p - -  hGh). 
h 

(48) 

The functions ~0oh(P, t) obey an infinite set of  
inhomogeneous  differential equations 

h a~oht/at + i[ eh(p) - e,(p)]q~h, 

= - i  E (Ahs~Os,--~OhsAsi)+ SCht(p) (49) 
$ 
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with the initial condition 

¢Phl(P, 0 ) = 0 ,  (50) 

where we have introduced the definitions ~lh (P,  t )  
~Pos(p+ hGt; t) if G t + G s = G h  and 

&,(p) = [1/2(2~)q J do~ 

x V [ ( I I - p ) / h - G , ] V [ ( p - I I ) / h + G h ]  

x S [ ( I I - p ) /  t~-G,;  ( p - I I ) /  h +Gh; to] 

X [ ~ ( E  H -- Ep+hG , -- h(.o) 

+ ~ ( e n -  %+nab- hw)]. (51) 

The function 5eh/(p) arises from the substitution of 
the zero-order approximation (47) into (23). In 
accordance with (4) the diagonal element q~oo(P, T) 
gives the inelastically scattered electron momentum 
distribution. To solve (49) we can transform a set of 
equations for elements ~Ph/(P, t) as in (39), 

~jf(t) = Z [c+(P)]jh~Pm(P, t)co'(P). (52) 
h,l 

From (49) and (52) we obtain 

h Ocpjf/ Ot + i[ Ej(p) - Ey(p) ]~pjj, = SCsj,(p). (53) 

The solution of (53) has the form 

T 
q~jj,(r) --- ( 1 / h  )Sf]j,(p) I d-r  

o 

x e x p { - i [ E j ( p ) - E y ( p ) ] ( T - r ) / h } .  (54) 

In the limiting case T>> h/IEj-E2,  ] we can neglect 
the rapidly oscillating terms in (54) and find 

q~jj,(p, T) = ( r /  h )Sjj,~jj,(p). (55 )  

This quantity is connected with the inelastically 
scattered electron distribution ~'oo(P, T) by means of 
unitary transformation (52). Using the inverse trans- 
formation we obtain 

q~oo(P, T ) = ( T / h )  Z • Coj2C*hjCOreht(P) • (56) 
j h,l 

The distribution (56) is valid in the general case of 
many-beam dynamical diffraction. In the particular 
two-beam case we can use the well known expression 
for Chj (Reimer, 1984, p. 288) and write down analyti- 
cally the intensity distribution in the Kikuchi patterns: 

~0oo(P, T ) = (  T~ fi){b%o(p ) 

+[1/2(1  + y2)][bD11 (p) - Se0o(P)] 

- [ y / 2 ( l  + y2)][b°o~(p)+ SClo(p)]} (57) 

q~oo(P+ hG, T)=(T/h){Se , , (p)  

+[1/2(1 + yE)][Seoo(P) - re,, (p)] 

+ [y/2(1 + y2)][Seo,(p) + 6e, o(p) ] }. 

(58) 

These expressions coincide with the results of 
Kainuma (1955), Fujimoto & Kainuma (1963), 
Okamoto, Ichinokawa & Ohtsuki (1971) and Ohtsuki 
(1983). One should note that the observed small 
oscillations of the inelastically scattered electron fan 
are related to some small terms neglected during the 
transformation from (54) to (55). The solution (54) 
is valid only in the case of a thin crystal with T,~ 
h/Yoo. If the thickness is larger than the mean free 
path with respect to inelastic collisions ( L >  hvo/7oo) 
we need to take multiple inelastic scattering of elec- 
trons into account. 

6. Kikuchi lines and bands in the thick crystal 

As is well known the main contribution to fast-elec- 
tron angular straggling in a crystal is due to thermal 
diffuse scattering. The scattering by plasmon or elec- 
tron-hole excitations leads to energy losses but practi- 
cally does not change the velocity direction. The 
diffraction-contrast conservation by plasmon and 
electron-hole inelastic scattering proves this fact in 
an experimental way (Cundy, Howie & Valdre, 1969). 
In the remaining discussion we shall not deal with 
the energy distribution of scattered electrons. Keep- 
ing in mind the following integration over the absolute 
value of p at a fixed observation direction we neglect 
below plasmon and electron-hole scattering. We thus 
use for the structure factor S(q, k; w) and for the 
non-Hermitian part of the regular potential the 
phonon parts given by Hall & Hirsch (1965). To find 
a general form of the solution (23) let us consider 
the solution of (23) in a particular case without 
diffraction, i.e. without taking into account all terms 
with K # 0. In this case the solution of (23) with the 
initial condition (11) has the form 

p(p,p'; t )=(27rh)36(p-p ')Wo(p, t )  (59) 

where Wo(p, t) satisfies the transport equation 

O Wo(p, t)/Ot= ~ [d3q/(27r)2]o'(q)6(ep+hq - ep) 

x Wo(p+ ~ q ) -  (~oo/h) Wo(p, t) 
and 

(60) 

or(q) = (1 /h)  (47re2/q2)2 N 

× Y.I-Z~ +f~ (q)[2{1 - e x p  [ - M ~  (q)]}. 
o~ 

The initial condition for (60) is 

Wo(p, o) = 6(p-II) .  (61) 

The solution of (60) with the condition (61) is called 
the Moliere distribution (Moliere, 1948). In a thick 
slab T>> h/yoo this distribution has the analytical 
form (Mott & Massey, 1965) 

Wo(p, t ) = ( 1 / m p ) 6 ( e p - e n )  

x[TrO~x In (4x)] -1 exp [ -02 /O~x  In (4x)] 

(62) 
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where 

x= Yoot/ h >> 1; pII = pH cos O; 

O~ = rn2eZZ2/3/hZp 2 is the mean square angle of elec- 
tron scattering by the thermal fluctuation of a single- 
atom potential. 

Taking into account the diffraction, i.e. the terms 
with K ~ 0, one can find a quite general form for the 
solution of (23)" 

p(p, p'; t )=  (27rh)3a(p- p') Wo(p, t) 

+ (27rh)3 ~ &oh(P, t )8 (p ' -p -hGh) .  
h 

(63) 

Substitution of (23) into (63) yields 

h Oeht(P, t)/Ot + i[eh(p)- et(P)]¢hO(p; t) 

=--iY.[Ahs--(i/2)3%]¢:t(p; t) 

+ i ~  eh:(P, t)[Ast+(i/2)%o] 

+ rr j" [d 3 q/(27r) 3] E V ( G : -  Gt +q) V(q) 
s 

x S(G:  - Gt +q;  q) 

X ~(Ep+fiGh+hq- ep+WGi)~bhs(P-t- hq; t) 

+ rr J" [d 3 q/(2rr) 3] 2 V(q) V ( G h - G s - q )  
$ 

xS(q;  q - G h  - G s )  

X ~(Ep+hG ~ -- Ep+hq+hGi)(~st(p-at- hq, t) 

+ i(1 - 6hl){ Wo(p--~- hGh; t) 

X[Aht+(i/2)yht]-- Wo(p+ hGt; t) 

×[Aht - - ( i /2 )Tht]}  

+ rr(1 - 6ht) J" [d 3q / (2~)3 ]V(Gh-G,+q)  V(q) 

X S(Gh - GI + q; q) 

X 6(Ep+fiGh+fiq-- Ep+f iGt  ) Wp(p+ hGh + hq; t) 
+ ~'( 1 - 6ht) J' [d 3 q~ (2"n') 3] V(q) V(Gh - G , - q )  

x S(q; q + Gt - Gh) 

X 6(ep+~,c.,+t,q-- ep+~C~) Wo(p+ hGt+ hq; t). 

(64) 

The initial condition for (64), as for (49), has the form 

eht(P; 0 )=0 .  (65) 

For h ~ I the function era(P, t) describes the mutual 
coherence properties of electron states with momenta 
p+ hGh and p+ hGt (Blum, 1981). 

As is easy to see from (37), for fixed p, the value 
~bh/(p , t) depends o n  the difference et--eh and 
decreases rapidly with increase in let-eh[. Actually, 
each diffracted wave has a rather high intensity only 

when the electron velocity direction lies within a fixed 
angular region. In the two-beam case this angular 
region is determined by the condition lyl 1. In the 
general case the angular widths of these 'coherence 
regions' can be estimated as (Fujimoto, Takagi, 
Komaki, Koike & Uchida, 1972) 

AO-.-am aohl/hpGh for h2G~/2mlaohl>> l (66) 

AO--(gm a,ol)'/2p for h2GZh/Zmlalo .~ 1. (67) 

These inequalities correspond to the opposite cases 
of weak and strong coupling in the electron transverse 
motion. In other words, using the expressions (66) 
and (67) we can say that the off-diagonal matrix 
elements Cht(P, t) [and also the diagonal element 
Coo(p, t)] have non-vanishing values only inside some 
angular region defined by a relation 

AO--min[4mlaoh[/hpGh; (8mla,o[)'/2/p]. (68) 

In the particular case, discussed in the Appendix, 
where 

A~9 ~ meZZi/3/ h 2p 
(69) 

7oot/h >> 1, 

(64) yields 

h Oeh,(p, t)/3t + i[eh(P)--e,(P)],bm(P, t) 

= --i ~ [Ahs-- ( i l2)yh. , ]¢: ,  

+iE  ¢hs[As,+(i/2)7:,] 

+ iAhl[ Wo(p+ hGh; t ) -  Wo(p+ h G I ; / ) ]  

+ (1 - 6m)(Yhtl 3'00) h 0 Wo(p, t)lOt. (70) 

As usual the fast-electron momentum distribution is 
related to the diagonal matrix element (63) 
Wo(p, T)+  Coo(P, T) where Wo(p, T) is the inelasti- 
cally scattered electron fan. All the Bragg-scattering 
effects are described by Coo(P, T). For this reason we 
have to define a Kikuchi pattern contrast by the 
relation 

Y{(p, T ) =  thoo(P, T)I Wo(p, T). (71) 

To solve (70) it is useful to transform this equation, 
like (39) and (52), into the Bloch-state representation 

h 3bjj,/3t + i (Ej-  Ej,)bjj, 

= -½Y~ ( w J ~ ; ; +  ~j;,w;~,) j" 

+ iMo,(t)+(l~jj,/Yoo-6z,)h OWo(p, t)/at, (72) 

where the quantities /.tjj, were defined in (42) and 
Mz,(t) has the form 

Mj/= Y. [c+(p)JjhAh, 
h,l 

× [ Wo(p+ hGh; t ) -  Wo(p+ hG,; t)]co,(p ). 
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As is clear from (73), the matrix M is anti-Hermitian 
and its diagonal elements vanish. If we avoid the 
critical-voltage effect, when Ej coincides with Ej, 
(Humphreys, 1979; Reimer, 1984), we can solve (72) 
by means of perturbation theory with the small 
parameters 

v , , ,= l&/ (E j -Ey) [ .< l ,  j # j ' .  (73) 

Using (69) we can neglect all the time derivatives in 
(72) and obtain analytical expressions for the 
diagonal and off-diagonal elements, 

dpjj = (1/ 3"oo)(1- 3"oo/ t.tjj)h 0 Wo(p, t)/Ot 

I ~ {[fLjj,Mj,j/fLjj(Ej,-Ej)] 
j#j' 

and 

+[ M j ; m J  mJ( EJ - ~j,)]} (74) 

qbjj, = M~, / ( Ej - Ej, ) . (75) 

Consequently the Kikuchi pattern contrast (71) has 
the form 

Y/(p, T ) =  ~ Coj(p)dpjj,(p, T)c*oj,(p)/Wo(p, T) (76) 
LJ' 

where we have taken into account (74) and (75). This 
expression gives the intensity distribution in the 
Kikuchi pattern for the case of a thick crystal (i.e. 
TooT~h>> 1). Using (76) we can give a very simple 
and clear interpretation for a number of experimental 
observations of the Kikuchi pattern contrast effects 
in thick crystalline foils (Uyeda & Nonoyama, 1967, 
1968; Nakai, 1970; Komuro, Kojima & Ichinokawa, 
1972). Actually, if Wo(p+ hGh, t)~- Wo(p+ hGt; t), 
the diagonal elements of (74) define the differences 
between the Bloch-state occupation numbers with the 
same value of quasi-momentum p. In the first-order 
approximation (63) (without the second term on the 
right-hand side), the Bloch-state occupation proba- 
bility does not depend on j and is equal to Wo(p, t). 
In the solid angular region where a Wo(p, t ) /a t> 0 
(the edges of the image) all Bloch states with/xjj > 3'00 
(strongly absorbed states) are fully occupied. In 
another regular angular region in the central part of 
the picture where a W0(p, O/at < 0 other states with 
/xjj < 3'00 (weakly absorbed states) are occupied pref- 
erentially. Such a distribution over the occupation 
numbers, caused by multiple scattering of the average 
fan of electrons, can be described by the transport 
equation (60). This equation shows what happens in 
an element of phase space in the presence of scatter- 
ing. The first term on the right-hand side describes 
the scattering from all other possible electron momen- 
tum states into the state being considered. The second 
term is an 'absorption' term which accounts for the 
scattering out of the momentum state considered into 
all other states. The initial condition (61) leads to an 
intensity distribution of Gaussian type with a sharp 

maximum in the central part of the image. To find a 
derivative in (72) one must use the analytical 
expression (62) 

0 Wo(p, t)/Ot-- Wo(p, t )(1/x)[O2/O2xln ( 4 x ) -  1]. 

(77) 

In the small-deflection-angle region O 2 < O2x In (4x), 
O Wo/at < 0  and the average fan decreases. In outer 
parts of the image 0 Wo(p, t)/Ot > 0 and the scattered 
electron intensity increases. 

A Bloch wave function of an electron in a single 
crystal has a nonhomogeneous space density distribu- 
tion ]~b(r)l 2. Consequently the different Bloch states 
have different phonon scattering probabilities. Owing 
to this circumstance, in the central part of the picture 
the absorption rate of the states localized on atomic 
planes is higher than the absorption rate of the 
average fan. By contrast, in the outer part of the image 
the occupation numbers of strongly absorbed states 
turn out to be somewhat larger than the average level 
and so on. The Kikuchi band reversed-contrast effect 
confirms this quantitative picture. As follows from 
much experimental data the reversed-contrast region 
increases with the crystal thickness. From (77) it is 
easy to find the angular width of the reversed-contrast 
region: 

O,--Oo[(Yoot/h)ln(4yoot/h)] ~/2. (78) 

The absolute value of the Kikuchi-band contrast 
decreases with the crystal thickness 

Y((p, T)~Y{o(p)/(YooT/h) (79) 

where 

IXo(p)l- 1. 

Assuming the level of contrast resolution is equal to 
0.1 (Ichimiya, 1973) one can easily obtain the 
maximum crystal thickness which permits Kikuchi 
pattern detection: 

Lmax = ooTmax - lOvoh/Yoo. (80) 

The value of Lma x and its velocity dependence are in 
good agreement with the experimental results 
reported by Uyeda & Nonoyama (1967, 1968). 

Thus, the Kikuchi bands in thick crystals arise from 
the anomalous transmission and anomalous absorp- 
tion of inelastically scattered electrons. By contrast, 
the Kikuchi lines arise as a result of a simple diffrac- 
tion transfer of a fan from the high-intensity regions 
to the regions of low intensity. 

In the single inelastic scattering model (Kainuma, 
1955; Ohtsuki, 1983) the Kikuchi line is described by 
the second term on the right-hand side of (57) and 
(58). In the thick-crystal case the Kikuchi lines are 
described by the matrix elements of Mj/. Using the 
two-beam approximation one can obtain an ana- 
lytical expression for the contrast distribution in the 
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pair of lines 

-½ {[ 1 -(yto/3,oo) 2] - Y3"to/3,oo} 
thoo(P, T) = {y2 + [ 1 - ( 3,,0/3'00)2]} 

x [ Wo(p, T ) -  Wo(p+ hGt; T)] (81) 

$oo(P + hGz; T)_½{[1 - (3,to/3'00)2] + Y3,,o/3,o0} 
{y2 + [ 1 - (3,,o/3'00)2]} 

x [ Wo(p; T ) -  Wo(p+ hGt; T)] 

(82) 
where both Ato and 3'1o are assumed to be real. In the 
limiting case 3,to = 0 (81) and (82) coincide with (57) 
and (58). 

The above expressions, (82) and (81), show the 
asymmetry of the lines with regard to the exact Bragg 
reflection condition y = 0. The angular width of the 
lines is 

Yl/2 ~ ( 1 -  2 , 2 ,1/2 3'to/3'00) < 1. 

Using the theorem of the mean one can obtain 

]" [d 3 q~ (2 rr) 2] V(Gh - G t - q )  V(q) 

X S ( G h  -- Gt + q, q)~( Ep+hGh+hq - -  ep+ hG,) 

x Wo(p+ hGh + hq; t) 

- (3"th/3"00) J [ d3 q~ (2 zr)2]l V(q)l 2 S(q, q) 

X ~(Ep+hq-- Ep) Wo(p-3 I- hq, t) 

-- 3'Ih[ Wo(p', t ) -  Wo(p", t)], (A1) 

Ip- 'p"l < h 2K(K + IGhl)/< O~,>P, 
K = m e 2 Z l / 3 / h  2. 

Consequently, for strong first-order reflections the 
difference (A1) can be estimated as 

3,th[ Wo(p, t)( hK/p)3((tge,)) -3/2 ~ hl3 Wo(p, t)/3t[. 

This expression enables us to derive equation (70). 

The effect of the angular width deci'ease in thick 
crystals could reach about 10%. This effect takes place 
for the Kikuchi band also. In the two-beam approxi- 
mation the Kikuchi-band intensity distribution has 
the form 

q~00(P; T) 

( 3,zo/ 3,oo)2 + y3,to/ 3,oo h 0 
y2 + [ 1 - ("/to/3"00) 2] 3,oo Ot 

4>oo(P+ hGt; T) 

(3,to/3"00) 2 - Y3,to/ 3,00 h 0 
y2 + [ 1 - (3,zo/3"00) 2] 3,00 Ot 

- -  - -  Wo(p, t) I 

Wo(p, t)] 

t = T  

t = T  

We ought to note that the effect of the angular width 
decrease does not enable one to examine the validity 
of the two-beam approximation in thick crystals by 
a simple comparison of the line width with the Bragg 
angle. 

A P P E N D I X  
When the inequality AO < me2Z1/3/h2p is satisfied, 
the angular width of the Kikuchi lines and bands is 
much less than the deflection angle of the single 
scattering of an electron by an atom. Consequently, 
a single inelastic collision leads to scattering into 
momentum states satisfying the relation ]eh(p)-- 
e,(p)[>>lAh,[. Owing to this circumstance in (64)we 
can neglect all integral terms including dPlh(P , t). 

The integral terms including Wo(p, t) can be esti- 
mated from the closed expression for the mean square 
deflection angle (Mott & Massey, 1965) 

( O~) = ( 3,oot/ h ) In (43,oot/h )( me2Z1/3/  h 2p)2. 
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Abstract 

A resolution-enhancement method has been pro- 
posed which makes use of the Sayre equation [Sayre 
(1952). Acta Cryst. 5, 60-65] to extrapolate both 
phases and magnitudes of structure factors. The start- 
ing point of the procedure is just a single decon- 
voluted electron microscopic image. No preliminary 
knowledge other than the chemical composition of 
the sample is necessary. A simulation on a theoretical 
image of copper perchlorophthalocyanine shows that 
the image resolution can be enhanced from 2 to 1 A, 
resolving clearly individual atoms. 

Introduction 
Enhancement of the resolution of electron micro- 
scopic images by a posteriori processing techniques 
has long been attempted (Li Fang-hua, 1977; 
Ishizuka, Miyazaki & Uyeda, 1982; Fan Hai-fu, 
Zhong Zi-yang, Zheng Chao-de & Li Fang-hua, 1985). 
All the methods mentioned above rely on an addi- 
tional electron diffraction pattern, which contains 
reflections corresponding to a higher resolution. 
Improvement in resolution can then be achieved 
simply by a phase extension procedure. However, 
without using the electron diffraction pattern, reso- 
lution enhancement is still possible. In X-ray crystal- 
lography, Fan Hai-fu & Zheng Qi-tai (1975) proposed 
a method using the Sayre equation (Sayre, 1952) to 
extrapolate both phases and magnitudes of structure 
factors. With this method a low-resolution image of 
a crystal structure can be enhanced to obtain a high- 
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resolution picture without the necessity of collecting 
additional diffraction data in high-angle regions of 
reciprocal space. In this paper, the method has been 
improved and applied to high-resolution electron 
microscopy. 

The philosophy of the method is as follows: For a 
crystalline sample, suppose that there are N atoms 
in the asymmetric unit; then, in order to reveal the 
structure with sufficiently high resolution, we only 
have to solve the 2N positional parameters (in the 
two-dimensional case). Now if we have in hand a 
low-resolution image of the crystal structure, which 
in reciprocal space can yield more than 2N symmetri- 
cally independent structure factors wihin its reso- 
lution limit, then in principle we can set up enough 
simultaneous equations to solve the 2N parameters. 
This implies that high-resolution structural informa- 
tion may be extracted from a low-resolution image. 
The Sayre equation (1) may be used for this purpose. 

f H = ( 0 / V ) E  FH,FH_H,. ( 1 ) 
H' 

Structure factors beyond the resolution limit can be 
obtained from the left-hand side of (1) using a set of 
structure factors at low resolution on the right-hand 
side. A least-squares procedure based on (1) has 
accordingly been developed. 

The least-squares procedure 
Suppose that we have m known structure factors with 
reciprocal vectors all within a resolution limit HL. 
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